1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
//! Symmetric encryption module. //! //! This module provides an interface for symmetric (secret key) cryptography. //! //! # Cryptography //! ## Ratcheting //! For the n'th message, the keys are hashed n times. The nonce is also hashed. In a system which does not allow for message loss and re-ordering, this provides forward secrecy for the symmetric keys as each key can be destroyed immediately after use. SHA-256 is used because this matches the key length of chacha20. //! //! ## Secure Channel //! Authenticates *first* with HMAC-SHA512 (only the first 256 bytes are used). This was chosen as it is the default authentication mechanism in sodiumoxide. //! Then we encrypt using ChaCha20. ChaCha20 was chosen over the sodiumoxide default (xsalsa20) because I will not be using a random nonse and chacha is more resistant to crypt analysis (see it's introductory paper). The key is used from the ratcheting system. //! //! # Example (Encrypted Authentication) //! ``` //! # extern crate sodiumoxide; //! # extern crate proj_crypto; //! # use proj_crypto::symmetric::*; //! use sodiumoxide::randombytes; //! use std::str; //! //! # fn main() { //! sodiumoxide::init(); //! let message = "hello world!"; //! let k_e = &randombytes::randombytes(32); //! let k_a = &randombytes::randombytes(32); //! let message_number: u16 = 0; //! //! let mut state = State::new(k_e, k_a); //! let ciphertext = state.authenticated_encryption(message.as_bytes(), message_number); //! let plaintext = state.authenticated_decryption(&ciphertext, message_number).unwrap(); //! //! assert_eq!(message, str::from_utf8(&plaintext).unwrap()); //! //! // some stuff happens. Now we no-longer need keys for messages numbered less than 8 //! //! state.increase_iter_to(8); //! //! // crypto still works for message numbers starting from 8: //! let ciphertext8 = state.authenticated_encryption(message.as_bytes(), 8); //! let plaintext8 = state.authenticated_decryption(&ciphertext8, 8).unwrap(); //! //! assert_eq!(message, str::from_utf8(&plaintext8).unwrap()); //! # } //! ``` //! //! # Example (Plain Authentication) //! ``` //! # extern crate sodiumoxide; //! # extern crate proj_crypto; //! # use proj_crypto::symmetric::*; //! use sodiumoxide::randombytes; //! use std::str; //! //! # fn main() { //! sodiumoxide::init(); //! let message = "hello world!".as_bytes(); //! let k_e = &randombytes::randombytes(32); //! let k_a = &randombytes::randombytes(32); //! let message_number: u16 = 0; //! //! let mut state = State::new(k_e, k_a); //! let state = State::new(k_e, k_a); //! let auth_tag = state.plain_auth_tag(message, message_number); //! //! assert!( state.verify_auth_tag(&auth_tag, message, message_number) ); //! # } //! ``` /* This file is part of project-crypto. project-crypto is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. project-crypto is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with project-crypto. If not, see http://www.gnu.org/licenses/.*/ mod chacha20hmacsha512256; mod ratchet; use self::ratchet::KeyIteration; use self::chacha20hmacsha512256::ChaCha20HmacSha512256; use sodiumoxide::crypto::stream::chacha20; use sodiumoxide::crypto::auth::hmacsha512256; use sodiumoxide::crypto::hash::sha256; use sodiumoxide::utils::memzero; pub use self::chacha20hmacsha512256::AUTH_TAG_BYTES; /// A wrapper around sha256::Digest so that we can implement Drop on it to clean up the memory when it goes out of scope. /// This is necessary because often our shared secret keys are sha256 digests. #[derive(Debug)] #[derive(PartialEq, Eq)] // equal when all fields are equal. sha256::Digest implements equality in constant time. pub struct Digest { // used in ratchet and asymmetric /// The encapsulated sha256::Digest pub digest: sha256::Digest, } /// Used in hash_n_times. Unfortunately we can't derive Clone on types with destructors. impl Clone for Digest { fn clone(&self) -> Digest { Digest { digest: self.digest.clone() } } } impl Drop for Digest { /// We are using sha256 digests as keys so we need to be careful with them. /// This function zeroes out the memory when it goes out of scope fn drop(&mut self) { let &mut sha256::Digest(ref mut digest_value) = &mut self.digest; memzero(digest_value); } } impl Digest { /// returns the actual data of the digest (from inside the sha256::Digest) pub fn as_slice(&self) -> [u8; sha256::DIGESTBYTES] { let &sha256::Digest(return_val) = &self.digest; return_val } } /// Stores the state of the symmetric encryption system. /// Memory is zeroed when this goes out of scope pub struct State { encryption_key: KeyIteration, // implements drop() authentication_key: KeyIteration, // implements drop() } impl State { /// Create a new symmetric::State object. pub fn new(encryption_key: &[u8], authentication_key: &[u8]) -> State { State { encryption_key: KeyIteration::first(encryption_key), authentication_key: KeyIteration::first(authentication_key), } } /// (private) Creates a new ChaCha20HmacSha512256 object fn create_encryption_object(&self, message_number: u16) -> ChaCha20HmacSha512256 { // using unwraps because everything was designed to always be the correct length let e_k = chacha20::Key::from_slice( &self.encryption_key.nth_key(message_number) ).unwrap(); let a_k = hmacsha512256::Key::from_slice( &self.authentication_key.nth_key(message_number) ).unwrap(); let nonce = chacha20::Nonce::from_slice( &hash_message_number(message_number) ).unwrap(); ChaCha20HmacSha512256::new(e_k, a_k, nonce) } // e_k and a_k implement drop so they will clean themselves up. The message number (nonce) is sent in the clear anyway. /// Perform authenticated encryption. /// The message number is used to select the correct encryption key and as a nonce. /// Returns the ciphertext. pub fn authenticated_encryption(&self, message: &[u8], message_number: u16) -> Vec<u8> { self.create_encryption_object(message_number).authenticate_and_encrypt(message) } /// Attempt authenticated decryption. /// Similar semantics to encryption. pub fn authenticated_decryption(&self, ciphertext: &[u8], message_number: u16) -> Option<Vec<u8>> { self.create_encryption_object(message_number).decrypt_and_authenticate(ciphertext) } /// Un-encrypted authentication for verifying public packet metadata such as the message number and length pub fn plain_auth_tag(&self, message: &[u8], message_number: u16) -> [u8; hmacsha512256::TAGBYTES] { self.create_encryption_object(message_number).plain_auth_tag(message) } /// for verifying tags created by plain_auth_tag pub fn verify_auth_tag(&self, auth_tag: &[u8], message: &[u8], message_number: u16) -> bool { // auth_tag is verified in ChaCha20HmacSha512256 self.create_encryption_object(message_number).verify_auth(auth_tag, message) } /// Destroy keys up to number n. /// This is done so that future compromises cannot compromise messages under the older keys and as a performance optimisation to reduce the number of hashes required. /// As it cannot be undone, this should not be done until the previous iterations of the keys are no-longer needed: for example their messages have all been acknowledged. pub fn increase_iter_to(&mut self, new_n: u16) { self.encryption_key.increase_iter_to(new_n); self.authentication_key.increase_iter_to(new_n); } } /// hashes the message number to make the nonce (remove all the structure) fn hash_message_number(num: u16) -> [u8; chacha20::NONCEBYTES] { let digest; let n = [(num >> 8) as u8, (num & 0xFF) as u8]; digest = sha256::hash(&n); let sha256::Digest(digest_data) = digest; // done in a clumsy-looking way so that this doesn't end up being a slice let mut ret: [u8; chacha20::NONCEBYTES] = [0; chacha20::NONCEBYTES]; for i in 0..chacha20::NONCEBYTES { ret[i] = digest_data[i]; } ret } /******************* Tests *******************/ #[cfg(test)] mod tests { use super::*; use sodiumoxide::randombytes; extern crate sodiumoxide; use std::str; const MESSAGE_LENGTH: usize = 1024; #[test] fn encrypt_decrypt_zero() { sodiumoxide::init(); let message = &randombytes::randombytes(MESSAGE_LENGTH); let k_e = &randombytes::randombytes(32); let k_a = &randombytes::randombytes(32); let message_number: u16 = 0; // important to test the boundary let state = State::new(k_e, k_a); let ciphertext = state.authenticated_encryption(message, message_number); let plaintext = state.authenticated_decryption(&ciphertext, message_number).unwrap(); assert_eq!(message, &plaintext); } fn random_message_number() -> u16 { let message_number_bytes = randombytes::randombytes(2); let mut message_number: u16 = 0; // turn two bytes into a u16 message_number |= ((message_number_bytes[0]) as u16) << 8; message_number |= (message_number_bytes[1]) as u16; // check the message number is valid if message_number == u16::max_value() { random_message_number() // generate a new one } else { message_number // this one is good enough } } // this might look like it would be slower but my i5-3570k can do 2 971 550 SHA512 hashes of this size in one second (openssl speed). This is a lot more than u16::max_value() #[test] fn encrypt_decrypt_random() { sodiumoxide::init(); let message = &randombytes::randombytes(MESSAGE_LENGTH); let k_e = &randombytes::randombytes(32); let k_a = &randombytes::randombytes(32); let message_number = random_message_number(); let state = State::new(k_e, k_a); let ciphertext = state.authenticated_encryption(message, message_number); let plaintext = state.authenticated_decryption(&ciphertext, message_number).unwrap(); assert_eq!(message, &plaintext); } #[test] fn plain_auth_random() { sodiumoxide::init(); let message = &randombytes::randombytes(MESSAGE_LENGTH); let k_e = &randombytes::randombytes(32); let k_a = &randombytes::randombytes(32); let message_number = random_message_number(); let state = State::new(k_e, k_a); let auth_tag = state.plain_auth_tag(message, message_number); assert!( state.verify_auth_tag(&auth_tag, message, message_number) ); } }