1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
//! `ed25519`, a signature scheme specified in
//! [Ed25519](http://ed25519.cr.yp.to/). This function is conjectured to meet the
//! standard notion of unforgeability for a public-key signature scheme under
//! chosen-message attacks.
use ffi;
use libc::c_ulonglong;
use std::iter::repeat;

/// Number of bytes in a `Seed`.
pub const SEEDBYTES: usize = ffi::crypto_sign_ed25519_SEEDBYTES;

/// Number of bytes in a `SecretKey`.
pub const SECRETKEYBYTES: usize = ffi::crypto_sign_ed25519_SECRETKEYBYTES;

/// Number of bytes in a `PublicKey`.
pub const PUBLICKEYBYTES: usize = ffi::crypto_sign_ed25519_PUBLICKEYBYTES;

/// Number of bytes in a `Signature`.
pub const SIGNATUREBYTES: usize = ffi::crypto_sign_ed25519_BYTES;

new_type! {
    /// `Seed` that can be used for keypair generation
    ///
    /// The `Seed` is used by `keypair_from_seed()` to generate
    /// a secret and public signature key.
    ///
    /// When a `Seed` goes out of scope its contents
    /// will be zeroed out
    secret Seed(SEEDBYTES);
}

new_type! {
    /// `SecretKey` for signatures
    ///
    /// When a `SecretKey` goes out of scope its contents
    /// will be zeroed out
    secret SecretKey(SECRETKEYBYTES);
}

new_type! {
    /// `PublicKey` for signatures
    public PublicKey(PUBLICKEYBYTES);
}

new_type! {
    /// Detached signature
    public Signature(SIGNATUREBYTES);
}

/// `gen_keypair()` randomly generates a secret key and a corresponding public
/// key.
///
/// THREAD SAFETY: `gen_keypair()` is thread-safe provided that you have
/// called `sodiumoxide::init()` once before using any other function
/// from sodiumoxide.
pub fn gen_keypair() -> (PublicKey, SecretKey) {
    unsafe {
        let mut pk = [0u8; PUBLICKEYBYTES];
        let mut sk = [0u8; SECRETKEYBYTES];
        ffi::crypto_sign_ed25519_keypair(&mut pk, &mut sk);
        (PublicKey(pk), SecretKey(sk))
    }
}

/// `keypair_from_seed()` computes a secret key and a corresponding public key
/// from a `Seed`.
pub fn keypair_from_seed(&Seed(ref seed): &Seed) -> (PublicKey, SecretKey) {
    unsafe {
        let mut pk = [0u8; PUBLICKEYBYTES];
        let mut sk = [0u8; SECRETKEYBYTES];
        ffi::crypto_sign_ed25519_seed_keypair(&mut pk,
                                              &mut sk,
                                              seed);
        (PublicKey(pk), SecretKey(sk))
    }
}

/// `sign()` signs a message `m` using the signer's secret key `sk`.
/// `sign()` returns the resulting signed message `sm`.
pub fn sign(m: &[u8],
            &SecretKey(ref sk): &SecretKey) -> Vec<u8> {
    unsafe {
        let mut sm: Vec<u8> = repeat(0u8).take(m.len() + SIGNATUREBYTES).collect();
        let mut smlen = 0;
        ffi::crypto_sign_ed25519(sm.as_mut_ptr(),
                                 &mut smlen,
                                 m.as_ptr(),
                                 m.len() as c_ulonglong,
                                 sk);
        sm.truncate(smlen as usize);
        sm
    }
}

/// `verify()` verifies the signature in `sm` using the signer's public key `pk`.
/// `verify()` returns the message `Ok(m)`.
/// If the signature fails verification, `verify()` returns `Err(())`.
pub fn verify(sm: &[u8],
              &PublicKey(ref pk): &PublicKey) -> Result<Vec<u8>, ()> {
    unsafe {
        let mut m: Vec<u8> = repeat(0u8).take(sm.len()).collect();
        let mut mlen = 0;
        if ffi::crypto_sign_ed25519_open(m.as_mut_ptr(),
                                         &mut mlen,
                                         sm.as_ptr(),
                                         sm.len() as c_ulonglong,
                                         pk) == 0 {
            m.truncate(mlen as usize);
            Ok(m)
        } else {
            Err(())
        }
    }
}

/// `sign_detached()` signs a message `m` using the signer's secret key `sk`.
/// `sign_detached()` returns the resulting signature `sig`.
pub fn sign_detached(m: &[u8],
                     &SecretKey(ref sk): &SecretKey) -> Signature {
    unsafe {
        let mut sig = [0u8; SIGNATUREBYTES];
        let mut siglen: c_ulonglong = 0;
        ffi::crypto_sign_ed25519_detached(&mut sig,
                                          &mut siglen,
                                          m.as_ptr(),
                                          m.len() as c_ulonglong,
                                          sk);
        assert_eq!(siglen, SIGNATUREBYTES as c_ulonglong);
        Signature(sig)
    }
}

/// `verify_detached()` verifies the signature in `sig` against the message `m`
/// and the signer's public key `pk`.
/// `verify_detached()` returns true if the signature is valid, false otherwise.
pub fn verify_detached(&Signature(ref sig): &Signature,
                       m: &[u8],
                       &PublicKey(ref pk): &PublicKey) -> bool {
    unsafe {
        0 == ffi::crypto_sign_ed25519_verify_detached(sig,
                                                      m.as_ptr(),
                                                      m.len() as c_ulonglong,
                                                      pk)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_sign_verify() {
        use randombytes::randombytes;
        for i in 0..256usize {
            let (pk, sk) = gen_keypair();
            let m = randombytes(i);
            let sm = sign(&m, &sk);
            let m2 = verify(&sm, &pk);
            assert!(Ok(m) == m2);
        }
    }

    #[test]
    fn test_sign_verify_tamper() {
        use randombytes::randombytes;
        for i in 0..32usize {
            let (pk, sk) = gen_keypair();
            let m = randombytes(i);
            let mut sm = sign(&m, &sk);
            for j in 0..sm.len() {
                sm[j] ^= 0x20;
                assert!(Err(()) == verify(&mut sm, &pk));
                sm[j] ^= 0x20;
            }
        }
    }

    #[test]
    fn test_sign_verify_detached() {
        use randombytes::randombytes;
        for i in 0..256usize {
            let (pk, sk) = gen_keypair();
            let m = randombytes(i);
            let sig = sign_detached(&m, &sk);
            assert!(verify_detached(&sig, &m, &pk));
        }
    }

    #[test]
    fn test_sign_verify_detached_tamper() {
        use randombytes::randombytes;
        for i in 0..32usize {
            let (pk, sk) = gen_keypair();
            let m = randombytes(i);
            let Signature(mut sig) = sign_detached(&m, &sk);
            for j in 0..SIGNATUREBYTES {
                sig[j] ^= 0x20;
                assert!(!verify_detached(&Signature(sig), &m, &pk));
                sig[j] ^= 0x20;
            }
        }
    }

    #[test]
    fn test_sign_verify_seed() {
        use randombytes::{randombytes, randombytes_into};
        for i in 0..256usize {
            let mut seedbuf = [0; 32];
            randombytes_into(&mut seedbuf);
            let seed = Seed(seedbuf);
            let (pk, sk) = keypair_from_seed(&seed);
            let m = randombytes(i);
            let sm = sign(&m, &sk);
            let m2 = verify(&sm, &pk);
            assert!(Ok(m) == m2);
        }
    }

    #[test]
    fn test_sign_verify_tamper_seed() {
        use randombytes::{randombytes, randombytes_into};
        for i in 0..32usize {
            let mut seedbuf = [0; 32];
            randombytes_into(&mut seedbuf);
            let seed = Seed(seedbuf);
            let (pk, sk) = keypair_from_seed(&seed);
            let m = randombytes(i);
            let mut sm = sign(&m, &sk);
            for j in 0..sm.len() {
                sm[j] ^= 0x20;
                assert!(Err(()) == verify(&mut sm, &pk));
                sm[j] ^= 0x20;
            }
        }
    }

    #[test]
    fn test_vectors() {
        // test vectors from the Python implementation
        // from the [Ed25519 Homepage](http://ed25519.cr.yp.to/software.html)
        use rustc_serialize::hex::{FromHex, ToHex};
        use std::fs::File;
        use std::io::{BufRead, BufReader};

        let r = BufReader::new(File::open("testvectors/ed25519.input").unwrap());
        for mline in r.lines() {
            let line = mline.unwrap();
            let mut x = line.split(':');
            let x0 = x.next().unwrap();
            let x1 = x.next().unwrap();
            let x2 = x.next().unwrap();
            let x3 = x.next().unwrap();
            let seed_bytes = x0[..64].from_hex().unwrap();
            assert!(seed_bytes.len() == SEEDBYTES);
            let mut seedbuf = [0u8; SEEDBYTES];
            for (s, b) in seedbuf.iter_mut().zip(seed_bytes.iter()) {
                *s = *b
            }
            let seed = Seed(seedbuf);
            let (pk, sk) = keypair_from_seed(&seed);
            let m = x2.from_hex().unwrap();
            let sm = sign(&m, &sk);
            verify(&sm, &pk).unwrap();
            assert!(x1 == pk[..].to_hex());
            assert!(x3 == sm.to_hex());
        }
    }

    #[test]
    fn test_vectors_detached() {
        // test vectors from the Python implementation
        // from the [Ed25519 Homepage](http://ed25519.cr.yp.to/software.html)
        use rustc_serialize::hex::{FromHex, ToHex};
        use std::fs::File;
        use std::io::{BufRead, BufReader};

        let r = BufReader::new(File::open("testvectors/ed25519.input").unwrap());
        for mline in r.lines() {
            let line = mline.unwrap();
            let mut x = line.split(':');
            let x0 = x.next().unwrap();
            let x1 = x.next().unwrap();
            let x2 = x.next().unwrap();
            let x3 = x.next().unwrap();
            let seed_bytes = x0[..64].from_hex().unwrap();
            assert!(seed_bytes.len() == SEEDBYTES);
            let mut seedbuf = [0u8; SEEDBYTES];
            for (s, b) in seedbuf.iter_mut().zip(seed_bytes.iter()) {
                *s = *b
            }
            let seed = Seed(seedbuf);
            let (pk, sk) = keypair_from_seed(&seed);
            let m = x2.from_hex().unwrap();
            let sig = sign_detached(&m, &sk);
            assert!(verify_detached(&sig, &m, &pk));
            assert!(x1 == pk[..].to_hex());
            let sm = sig[..].to_hex() + x2; // x2 is m hex encoded
            assert!(x3 == sm);
        }
    }

    #[cfg(feature = "default")]
    #[test]
    fn test_serialisation() {
        use randombytes::randombytes;
        use test_utils::round_trip;
        for i in 0..256usize {
            let (pk, sk) = gen_keypair();
            let m = randombytes(i);
            let sig = sign_detached(&m, &sk);
            round_trip(pk);
            round_trip(sk);
            round_trip(sig);
        }
    }
}

#[cfg(feature = "benchmarks")]
#[cfg(test)]
mod bench {
    extern crate test;
    use randombytes::randombytes;
    use super::*;

    const BENCH_SIZES: [usize; 14] = [0, 1, 2, 4, 8, 16, 32, 64,
                                      128, 256, 512, 1024, 2048, 4096];

    #[bench]
    fn bench_sign(b: &mut test::Bencher) {
        let (_, sk) = gen_keypair();
        let ms: Vec<Vec<u8>> = BENCH_SIZES.iter().map(|s| {
            randombytes(*s)
        }).collect();
        b.iter(|| {
            for m in ms.iter() {
                sign(m, &sk);
            }
        });
    }

    #[bench]
    fn bench_verify(b: &mut test::Bencher) {
        let (pk, sk) = gen_keypair();
        let sms: Vec<Vec<u8>> = BENCH_SIZES.iter().map(|s| {
            let m = randombytes(*s);
            sign(&m, &sk)
        }).collect();
        b.iter(|| {
            for sm in sms.iter() {
                verify(sm, &pk);
            }
        });
    }
}